11 février 2008

 

Topologie

La topologie est une discipline des mathématiques qui traite de la recherche des invariants dans une géométrie débarrassée de toute idée de mesure ou de distance. Appliquée à l'étude des surfaces, par exemple, elle recense les invariants qui résistent à la déformation de celles-ci. D'apparition récente (milieu du XIXème siècle avec Listing, Möbius, etc...), la topologie délaisse toute métrique pour s'intéresser de manière qualitative aux rapports spatiaux entre les différentes parties des figures.
La topologie se distingue d'abord de la géométrie euclidienne par la conception de l'équivalence entre deux objets. En géométrie euclidienne, deux objets sont équivalents si on peut transformer l’un en l’autre à l’aide d’isométries (rotations, translations, réflexions, etc.…) c'est-à-dire, des transformations qui conservent la valeur des angles, des longueurs, des aires, des volumes et autres. En topologie, deux objets sont équivalents dans un sens beaucoup plus large. Ils doivent avoir le même nombre de morceaux, de trous, d’intersections etc.… En topologie, il est permis de doubler, étirer, tordre etc.…des objets mais toujours sans les rompre, ni séparer ce qui est uni, ni coller ce qui est séparé. Par exemple, un triangle est topologiquement la même chose qu’un cercle, c'est-à-dire qu’on peut transformer l’un en l’autre sans rompre et sans coller. Mais un cercle n’est pas la même chose qu’un segment (on doit casser le cercle pour obtenir le segment).
C’est la raison pour laquelle on présente parfois la topologie comme une « géométrie de la feuille de caoutchouc » : c’est comme si l'on étudiait la géométrie avec une feuille de caoutchouc que l’on pourrait contracter, étirer, etc. Une plaisanterie traditionnelle entre topologues — mathématiciens travaillant sur la topologie — raconte d'ailleurs qu’un topologue est une personne qui ne sait pas distinguer une tasse d’un beignet.
Mais cette explication intuitive, quoique ingénieuse, est partielle et biaisée. Elle pourrait nous porter à croire que la topologie traite seulement d’objets et de concepts géométriques ; alors qu’au contraire, c’est la géométrie qui traite un certain type d’objets topologiques. Historiquement, la topologie a succédé à la géométrie, dont elle est une généralisation ; mais mathématiquement, la topologie précède la géométrie, qui n'en est qu'un cas particulier : les manuels et traités qui, comme celui de Bourbaki, procèdent du général au particulier, commencent ainsi par traiter de la topologie, dont dérivent les concepts et théorèmes de la géométrie.
L’origine de la topologie est l’étude de la géométrie dans les cultures antiques. Le travail de Leonhard Euler datant de 1736 sur le problème des sept ponts de Königsberg est considéré comme l’un des premiers résultats de géométrie qui ne dépend d’aucune mesure, c’est-à-dire l’un des premiers résultats topologiques.
Le terme « topologie », fut introduit en allemand en 1847 par Johann Benedict Listing dans « Vorstudien zur Topologie ».

Libellés : ,




Links to this post:

Créer un lien



<< Home

This page is powered by Blogger. Isn't yours?