29 avril 2008

 

Surfaces minimales

En mathématiques et en physique, une surface minimale est une surface minimisant son aire. Ce minimum est réalisé sous une contrainte : un ensemble de points, le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la physique des liquides, le traitement mathématique utilise le langage des surfaces minimales.



Intuitivement, une surface minimale est une surface dont l'aire ou le volume ne peut qu'augmenter lorsqu'on lui applique une perturbation suffisamment petite. Les surfaces minimales forment donc l'analogue en dimension supérieure des géodésiques (courbes dont la longueur ne peut qu'augmenter sous l'effet d'une perturbation assez petite et assez localisée).
En 1744, Leonhard Euler (encore lui !) posait et résolvait le premier problème de surface minimale : trouver, entre toutes les surfaces passant par deux cercles parallèles, celle dont la surface était la plus petite. Il découvrit ainsi la caténoïde.

Libellés : , ,






<< Home

This page is powered by Blogger. Isn't yours?